skmultiflow.trees.ExtremelyFastDecisionTreeClassifier

class skmultiflow.trees.ExtremelyFastDecisionTreeClassifier(max_byte_size=33554432, memory_estimate_period=1000000, grace_period=200, min_samples_reevaluate=20, split_criterion='info_gain', split_confidence=1e-07, tie_threshold=0.05, binary_split=False, stop_mem_management=False, leaf_prediction='nba', nb_threshold=0, nominal_attributes=None)[source]

Extremely Fast Decision Tree classifier.

Parameters
max_byte_size: int (default=33554432)

Maximum memory consumed by the tree.

memory_estimate_period: int (default=1000000)

Number of instances between memory consumption checks.

grace_period: int (default=200)

Number of instances a leaf should observe between split attempts.

min_samples_reevaluate: int (default=20)

Number of instances a node should observe before reevaluate the best split.

split_criterion: string (default=’info_gain’)
Split criterion to use.
‘gini’ - Gini
‘info_gain’ - Information Gain
split_confidence: float (default=0.0000001)

Allowed error in split decision, a value closer to 0 takes longer to decide.

tie_threshold: float (default=0.05)

Threshold below which a split will be forced to break ties.

binary_split: boolean (default=False)

If True, only allow binary splits.

stop_mem_management: boolean (default=False)

If True, stop growing as soon as memory limit is hit.

leaf_prediction: string (default=’nba’)
Prediction mechanism used at leafs.
‘mc’ - Majority Class
‘nb’ - Naive Bayes
‘nba’ - Naive Bayes Adaptive
nb_threshold: int (default=0)

Number of instances a leaf should observe before allowing Naive Bayes.

nominal_attributes: list, optional

List of Nominal attributes. If emtpy, then assume that all attributes are numerical.

Notes

The Extremely Fast Decision Tree (EFDT) [1] constructs a tree incrementally. The EFDT seeks to select and deploy a split as soon as it is confident the split is useful, and then revisits that decision, replacing the split if it subsequently becomes evident that a better split is available. The EFDT learns rapidly from a stationary distribution and eventually it learns the asymptotic batch tree if the distribution from which the data are drawn is stationary.

References

1

C. Manapragada, G. Webb, and M. Salehi. Extremely Fast Decision Tree. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD ‘18). ACM, New York, NY, USA, 1953-1962. DOI: https://doi.org/10.1145/3219819.3220005

Examples

>>> # Imports
>>> from skmultiflow.data import SEAGenerator
>>> from skmultiflow.trees import ExtremelyFastDecisionTreeClassifier
>>>
>>> # Setting up a data stream
>>> stream = SEAGenerator(random_state=1)
>>>
>>> # Setup Extremely Fast Decision Tree classifier
>>> efdt = ExtremelyFastDecisionTreeClassifier()
>>>
>>> # Setup variables to control loop and track performance
>>> n_samples = 0
>>> correct_cnt = 0
>>> max_samples = 200
>>>
>>> # Train the estimator with the samples provided by the data stream
>>> while n_samples < max_samples and stream.has_more_samples():
>>>     X, y = stream.next_sample()
>>>     y_pred = efdt.predict(X)
>>>     if y[0] == y_pred[0]:
>>>         correct_cnt += 1
>>>     efdt.partial_fit(X, y)
>>>     n_samples += 1
>>>
>>> # Display results
>>> print('{} samples analyzed.'.format(n_samples))
>>> print('Extremely Fast Decision Tree accuracy: {}'.format(correct_cnt / n_samples))

Methods

fit(X, y[, classes, sample_weight])

Fit the model.

get_info()

Collects and returns the information about the configuration of the estimator

get_model_description()

Walk the tree and return its structure in a buffer.

get_model_rules()

Returns list of rules describing the tree.

get_params([deep])

Get parameters for this estimator.

get_rules_description()

Prints the description of tree using rules.

measure_byte_size()

Calculate the size of the tree.

partial_fit(X, y[, classes, sample_weight])

Incrementally trains the model.

predict(X)

Predicts the label of the X instance(s)

predict_proba(X)

Predicts probabilities of all label of the X instance(s)

reset()

Reset the Hoeffding Tree to default values.

score(X, y[, sample_weight])

Returns the mean accuracy on the given test data and labels.

set_params(**params)

Set the parameters of this estimator.

Attributes

leaf_prediction

model_measurements

Collect metrics corresponding to the current status of the tree.

split_criterion

fit(X, y, classes=None, sample_weight=None)[source]

Fit the model.

Parameters
Xnumpy.ndarray of shape (n_samples, n_features)

The features to train the model.

y: numpy.ndarray of shape (n_samples, n_targets)

An array-like with the class labels of all samples in X.

classes: numpy.ndarray, optional (default=None)

Contains all possible/known class labels. Usage varies depending on the learning method.

sample_weight: numpy.ndarray, optional (default=None)

Samples weight. If not provided, uniform weights are assumed. Usage varies depending on the learning method.

Returns
self
get_info()[source]

Collects and returns the information about the configuration of the estimator

Returns
string

Configuration of the estimator.

get_model_description()[source]

Walk the tree and return its structure in a buffer.

Returns
string

The description of the model.

get_model_rules()[source]

Returns list of rules describing the tree.

Returns
list (Rule)

list of the rules describing the tree

get_params(deep=True)[source]

Get parameters for this estimator.

Parameters
deepboolean, optional

If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns
paramsmapping of string to any

Parameter names mapped to their values.

get_rules_description()[source]

Prints the description of tree using rules.

measure_byte_size()[source]

Calculate the size of the tree.

Returns
int

Size of the tree in bytes.

property model_measurements

Collect metrics corresponding to the current status of the tree.

Returns
string

A string buffer containing the measurements of the tree.

partial_fit(X, y, classes=None, sample_weight=None)[source]

Incrementally trains the model. Train samples (instances) are composed of X attributes and their corresponding targets y.

Parameters
X: numpy.ndarray of shape (n_samples, n_features)

Instance attributes.

y: array_like

Classes (targets) for all samples in X.

classes: list or numpy.array

Contains the class values in the stream. If defined, will be used to define the length of the arrays returned by predict_proba

sample_weight: float or array-like

Samples weight. If not provided, uniform weights are assumed.

Notes

Tasks performed before training:

  • Verify instance weight. if not provided, uniform weights (1.0) are assumed.

  • If more than one instance is passed, loop through X and pass instances one at a time.

  • Update weight seen by model.

Training tasks:

  • If the tree is empty, create a leaf node as the root.

  • If the tree is already initialized, find the path from root to the corresponding leaf for

the instance and sort the instance.

  • Reevaluate the best split for each internal node.

  • Attempt to split the leaf.

predict(X)[source]

Predicts the label of the X instance(s)

Parameters
X: numpy.ndarray of shape (n_samples, n_features)

Samples for which we want to predict the labels.

Returns
numpy.array

Predicted labels for all instances in X.

predict_proba(X)[source]

Predicts probabilities of all label of the X instance(s)

Parameters
X: numpy.ndarray of shape (n_samples, n_features)

Samples for which we want to predict the labels.

Returns
numpy.array

Predicted the probabilities of all the labels for all instances in X.

reset()[source]

Reset the Hoeffding Tree to default values.

score(X, y, sample_weight=None)[source]

Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted.

Parameters
Xarray-like, shape = (n_samples, n_features)

Test samples.

yarray-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weightarray-like, shape = [n_samples], optional

Sample weights.

Returns
scorefloat

Mean accuracy of self.predict(X) wrt. y.

set_params(**params)[source]

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Returns
self